skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Indirect function calls are widely used in building system software like OS kernels for their high flexibility and performance. Statically resolving indirect-call targets has been known to be a hard problem, which is a fundamental requirement for various program analysis and protection tasks. The state-of-the-art techniques, which use type analysis, are still imprecise. In this paper, we present a new approach, TFA, that precisely identifies indirect-call targets. The intuition behind TFA is that type-based analysis and data-flow analysis are inherently complementary in resolving indirect-call targets. TFA incorporates a co-analysis system that makes the best use of both type information and data-flow information. The co-analysis keeps refining the global call graph iteratively, allowing us to achieve an optimal indirect call analysis. We have implemented TFA in LLVM and evaluated it against five famous large-scale programs. The experimental results show that TFA eliminates additional 24% to 59% of indirect-call targets compared with the state-of-the-art approaches, without introducing new false negatives. With the precise indirect-call analysis, we further developed a strengthened fine-grained forward-edge control-flow integrity scheme and applied it to the Linux kernel. We have also used the refined indirect-call analysis results in bug detection, where we found 8 deep bugs in the Linux kernel. As a generic technique, the precise indirect-call analysis of TFA can also benefit other applications such as compiler optimization and software debloating. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)